INTELIGENCIA ARTIFICIAL

INTRODUCCIÓN

El término “inteligencia artificial” fue acuñado formalmente en 1956 durante la conferencia de Darthmounth, más para entonces ya se había estado trabajando en ello durante cinco años en los cuales se había propuesto muchas definiciones distintas que en ningún caso habían logrado ser aceptadas totalmente por la comunidad investigadora. La AI es una de las disciplinas más nuevas que junto con la genética moderna es el campo en que la mayoría de los científicos ” más les gustaría trabajar”.

Una de las grandes razones por la cuales se realiza el estudio de la IA es él poder aprender más acerca de nosotros mismos y a diferencia de la psicología y de la filosofía que también centran su estudio de la inteligencia, IA y sus esfuerzos por comprender este fenómeno están encaminados tanto a la construcción de entidades de inteligentes como su comprensión.

INTELIGENCIA ARTIFICIAL

Él término “inteligencia artificial” fue acuñado formalmente en 1956 durante la conferencia de Darthmounth, más para entonces ya se había estadotrabajando en ello durante cinco años en los cuales se había propuesto muchas definiciones distintas que en ningún caso habían logrado ser aceptadas totalmente por la comunidad investigadora. La AI es una de las disciplinas más nuevas que junto con la genética moderna es el campo en que la mayoría de los científicos ” más les gustaría trabajar”.

Una de las grandes razones por la cuales se realiza el estudio de la IA es él poder aprender más acerca de nosotros mismos y a diferencia de la psicologíay de la filosofía que también centran su estudio de la inteligencia, IA y sus esfuerzos por comprender este fenómeno están encaminados tanto a laconstrucción de entidades de inteligentes como su comprensión.

El estudio de la inteligencia es una de las disciplinas más antiguas, por más de 2000 años los filósofos no han escatimado esfuerzos por comprender como se ve, recuerda y razona junto con la forma en que estas actividades deberían realizarse. Según John Mc Carthy la inteligencia es la “capacidad que tiene el ser humano de adaptarse eficazmente al cambio de circunstancias mediante el uso de información sobre esos cambios”, pero esta definición resulta muy amplia ya que de acuerdo con esta, el sistema inmunológico del cuerpo humanó resultaría inteligente ya que también mediante el uso de información este logra adaptarse al cambio. Otra interesante manera de ilustrar la inteligencia seria recurrir a la teoría societal de la mente de Marvin Minsky donde cada mente humana es el resultado del accionar de un comité de mentes de menor poder que conversan entre sí y combinan sus respectivas habilidades con el fin de resolver problemas.

La llegada de las computadoras a principios de los 50, permitió el abordaje sin especulación de estas facultades mentales mediante una autenticadisciplina teórica experimental. Es a partir de esto que se encontró que la IA constituye algo mucho más complejo de lo que se pudo llegar a imaginar en principio ya que las ideas modernas que constituyen esta disciplina se caracterizan por su gran riqueza, sutileza e interés; en la actualidad la IA abarca una enorme cantidad de subcampos que van desde áreas de propósito general hasta tareas especificas.

Una de las definiciones que se han dado para describir la IA la sitúa dentro de una disciplina que tiene que ver con las ciencias de la computación que corresponden al esfuerzo por parte de gran cantidad de científicos que durante los últimos treinta años han realizado con el fin de dotar a las computadoras de inteligencia, a partir de esta definición encontramos que una de las técnicas de IA es aquella que se utiliza con el fin de lograr que un determinado programa se comporte de forma inteligente sin pretender tener en cuenta la ” forma de razonamiento “empleada para lograr ese comportamiento.

Luego, aquí surge un dilema, ya que según esto cualquier problema resoluble por un computador, sin complicaciones y también como un ser humano podría encuadrarse en el campo de la inteligencia artificial acudiendo solamente a la aplicación de reglas consecutivas al pie de la letra o lo que encontramos con el nombre de Algoritmos dentro del lenguaje de IA; este término fue acuñado en honor al matemático árabe AL-KWARIZMI que copiló una serie de estos para ser aplicados a diferentes problemas algebraicos.

Cuando se aplican algoritmos a la solución de los problemas aunque no se está actuando inteligentemente si está siendo eficaz pero los problemas realmente complicados a los que se enfrenta el ser humano son aquellos en los cuales no existe algoritmo conocido así que surgen de reglas que tratan de orientarnos hacia las soluciones llamadas Heurísticas en las cuales nunca nada nos garantiza que la aplicación de una de estas reglas nos acerque a la solución como ocurre con los anteriores.

A partir de estos datos; Farid Fleifel Tapia describe a la IA como: “la rama de la ciencia de la computación que estudia la resolución de problemas no algorítmicos mediante el uso de cualquier técnica de computación disponible, sin tener en cuenta la forma de razonamiento subyacente a los métodos que se apliquen para lograr esa resolución.
Para completar esa definición, algunas definiciones no tan formales emitidas por diferentes investigadores de la IA que consideran otros puntos de vista son:

  • La IA es el arte de crear maquinas con capacidad de realizar funciones que realizadas por personas requieren de inteligencia. ( Kurzweil, 1990)
  • La IA es el estudio de cómo lograr que las computadoras realicen tareas que, por el momento, los humanos hacen mejor. (Rich, Knight, 1991).
  • La IA es la rama de la ciencia de la computación que se ocupa de la automatización de la conducta inteligente. (Lugar y Stubblefied, 1993).
  • La IA es el campo de estudio que se enfoca a la explicación y emulación de la conducta inteligente en función de procesos computacionales. (Schalkoff, 1990).

En la IA se puede observar dos enfoques diferentes:

  1. La IA concebida como el intento por desarrollar una tecnología capaz de proveer al ordenador capacidades de razonamiento similares a los de la inteligencia humana.
  2. La IA en su concepción como investigación relativa a los mecanismos de la inteligencia humana que se emplean en la simulación de validación deteorías.

El primer enfoque se centra en la utilidad y no en el método como veíamos anteriormente con los algoritmos, los temas claves de este enfoque son la representación y gestión de conocimiento, sus autores más representativos son McCrrthy y Minsky.

John McCarthy

En el segundo enfoque encontramos que este se orienta a la creación de un sistema artificial capaz de realizar procesos cognitivos humanos haciendo importante ya no la utilidad como el método, los aspectos fundamentales de este enfoque se refieren al aprendizaje y adaptabiliada y sus autores sonNewell y Simon de la Carnegie Mellon University.

La IA al tratar de construir maquinas que se comporten aparentemente como seres humanos han dado lugar al surgimiento de dos bloques enfrentados: el enfoque simbólico o top-down, conocido como
la IA clásica y el enfoque subsimbolico llamado a veces conexionista.

Los simbólicos simulan directamente las características inteligentes que se pretenden conseguir o imitar y lo mejor que también se tiene a la mano es el hombre; para los constructores de los sistemas expertos resulta fundamental la representación del conocimiento humano donde gracias a estos avances se han encontrado dos tipos de conocimiento: conocimiento acerca del problema particular¨ y ¨conocimiento a cerca de cómo obtener más conocimiento a partir del que ya tenemos¨. El ejemplo más representativo de esta corriente es el proyecto de Cyc de Douglas B. Lenat sobre un sistema que posee en su memoria millones de hechos interconectados.

Dentro de la otra corriente: la subsimbolica; sus esfuerzos se orientan a la simulación de los elementos de mas bajo nivel dentro de los procesos inteligentes con la esperanza de que estos al combinarse permitan que espontáneamente surja el comportamiento inteligente. Los ejemplos mas claros que trabajan con este tipo de orientación son las redes neuronales y los algoritmos genéticos donde estos sistemas trabajan bajo la autonomía, el aprendizaje y la adaptación, conceptos fuertemente relacionados.

Uno de los grandes seguidores de la IA; Marvin Minsky, ha dado una clasificación para los lenguajes de programación que se utilizan en esta disciplina:

Marvin Minsky

  • ¨Haga ahora¨: Donde el programador surte de instrucciones a la maquina para realizar una tarea determinada donde todo queda especificado excepto quizás él numero de repeticiones.
  • ¨Haga siempre que¨: Aquí se permite escribir un programa que le sirva a la computadora para resolver aquello problemas que el programador no sabe resolver pero conoce que tipo de soluciones se pueden intentar.
  • “De constreñimiento”: se escriben programas que definen estructuras y estados que se condicionan y limitan recíprocamente.
  • Pero Minsky, admite que aún será necesario desarrollar dos tipos de lenguajes más para obtener una IA comparable a la inteligencia humana; y estos podrían ser.
    o “Haga algo que tenga sentido¨: Donde se permite al programa aprender del pasado y en una nueva situación aplicar sus enseñanzas.
    o “Mejórense a sí mismo”: Allí se podrá permitir escribir programas que tengan en adelante la capacidad de escribir programas mejores que ellos mismos.

Otro punto desde luego tiene que ver con el tema que aquí estamos tratando es por supuesto el concepto de lo que es creatividad, que a simple vista es algo que no podemos explicar porque es resultado de un don especial pero que los estudios sobre IA han comenzado hacer posible dar explicación satisfactoria: nos dicen que en la medida que se logre escribir programas que exhiban propiedad, en esa misma medida se empezara a explicar la creatividad.

Otra propiedad que se espera ver asociada a la IA es la autoconciencia; que de acuerdo con los resultados de las investigaciones psicológicas hablan por una parte de que como es bien sabido, el pensamiento humano realiza gran cantidad de funciones que no se pueden calificar de conscientes y que por lo tanto la autoconciencia contribuye en cierto sentido a impedir el proceso mental eficiente; pero por otro lado es de gran importancia poder tener conocimiento sobre nuestras propias capacidades y limitaciones siendo esto de gran ayuda para el funcionamiento de la inteligencia tanto de la maquina como del ser humano.

Pero sería imposible tratar de contemplar el tema de la IA sin recurrir a la cuestión de la complejidad; donde el comportamiento inteligente es el resultado de la interacción de muchos elementos y que con seguridad es una de las más valiosas contribuciones al tratar de simular en la maquina los fenómenos intelectuales humanos.

La IA se ha desarrollado como disciplina a partir de la concepción de la inteligencia que se realizo al interior de la psicología y a partir de la cual se elaboraron diferentes categorías.

La inteligencia: Diferentes teorías y definiciones.

En 1904 el ministerio de instrucción pública de Francia pidió al psicólogo francés Alfred Binet y a un grupo de colegas suyos que desarrollan un modo de determinar cuáles alumnos de la escuela primaria corrían el riesgo de fracasar para que estos alumnos reciban una atención compensatoria. De sus esfuerzos nacieron las primeras pruebas de inteligencia. Importadas a los EEUU varios años después las pruebas se difundieron ampliamente así como la idea de que existiera algo llamado ” inteligencia” que podía medirse de manera objetiva y reducirse a un numero o puntaje llamado ” coeficiente intelectual” desde entonces sé a definido la inteligencia en términos de “habilidad para resolver problemas”.

I. INTELIGENCIAS MULTIPLES

Un psicólogo de Harvard llamado Howard Garden, señalo que nuestra cultura había definido la inteligencia de manera muy estrecha y propuso en sulibro ” estructura de la mente”, la existencia de por lo menos siete inteligencias básicas:

  • Inteligencia lingüística: capacidad de usar las palabras de modo efectivo ( ya sea hablando, escribiendo, etc). Incluye la habilidad de manipular la sintaxis o escritura del lenguaje, la fonética o los sonidos del lenguaje, la semántica o significado de lenguaje o división, pragmática o los husos prácticos.
  • Inteligencia lógico matemática: capacidad de usar los números de manera efectiva y de razonar adecuadamente ( pensamiento vertical).
  • Inteligencia espacial: la habilidad para percibir la manera exacta del mundo visual-espacial y de ejecutar transformaciones sobre esas percepciones ( decorador, artistas, etc).
  • Inteligencia corporal – kinética: la capacidad para usar el cuerpo para expresar ideas y sentimientos y facilidad en el uso de las propias manos para producir o transformar cosas.
  • Inteligencia musical: capacidad de percibir, discriminar, trasformar y expresar las formas musicales.
  • Inteligencia interpersonal: la capacidad de percibir y establecer distinciones entre los estados de ánimo, las intenciones, motivaciones, sentimientos, de otras personas.
    o Inteligencia intrapersonal: el conocimiento de sí mismo y la habilidad para adaptar las propias maneras de actuar a partir de ese conocimiento.
    Más allá de la descripción de las inteligencias y de sus fundamentos teóricos hay ciertos aspectos que convienen destacar:
  • Cada persona posee varios tipos de inteligencias.
  • La mayoría de las personas pueden desarrollar cada inteligencia hasta un nivel adecuado de competencia.
  • Las inteligencias por lo general trabajan juntas de manera compleja, ósea, siempre interactúan entre sí para realizar la mayoría de las tareas se precisan todas las inteligencias aunque en niveles diferentes hay muchas maneras de ser inteligentes en cada categoría.

Inteligencia emocional: existe una dimensión de la inteligencia personal que está ampliamente mencionada aunque poco explorada en las elaboraciones de Gadner: el papel de las emociones.

Daniel Goleman; toma este desafío y comienza a trabajar sobre el desarrollo de Gadner llevando a un plano más pragmático y centrado en las emociones como foco de la inteligencia.

FUTURO DE LA INTELIGENCIA ARTIFICIAL

El empleo de la IA esta orientado a aquellas profesiones que, ya sea por lo incomodo, peligroso o complicado de su trabajo necesitan apoyo de un experto en la materia. Las ventajas que trae el disponer de un asistente artificial no son mas que las de solucionar los errores y defectos propios del ser humano; es decir, el desarrollo de sistemas expertos que hoy en día se están utilizando con éxito en los campos de la medicina, geología y aeronáutica aunque todavía están poco avanzados en relación con el ideal del producto IA completo.

CATEGORÍAS DE LA INTELIGENCIA ARTIFICIAL

Stuart Russell y Peter Norvig diferencian estos tipos de la inteligencia artificial:

  • Sistemas que piensan como humanos.- Estos sistemas tratan de emular el pensamiento humano; por ejemplo las redes neuronales artificiales. La automatización de actividades que vinculamos con procesos de pensamiento humano, actividades como la Toma de decisiones, resolución de problemas, aprendizaje.
  • Sistemas que actúan como humanos.- Estos sistemas tratan de actuar como humanos; es decir, imitan el comportamiento humano; por ejemplo la robótica. El estudio de cómo lograr que los computadores realicen tareas que, por el momento, los humanos hacen mejor.
  • Sistemas que piensan racionalmente.- Es decir, con lógica (idealmente), tratan de imitar o emular el pensamiento lógico racional del ser humano; por ejemplo los sistemas expertos. El estudio de los cálculos que hacen posible percibir, razonar y actuar.
  • Sistemas que actúan racionalmente (idealmente).– Tratan de emular de forma racional el comportamiento humano; por ejemplo los agentes inteligentes .Está relacionado con conductas inteligentes en artefactos.

Escuelas de pensamiento

La IA se divide en dos escuelas de pensamiento:

  • La inteligencia artificial convencional
  • La inteligencia computacional

INTELIGENCIA ARTIFICIAL CONVENCIONAL

Se conoce también como IA simbólico-deductiva. Está basada en el análisis formal y estadístico del comportamiento humano ante diferentes problemas:

  • Razonamiento basado en casos: Ayuda a tomar decisiones mientras se resuelven ciertos problemas concretos y aparte de que son muy importantes requieren de un buen funcionamiento.
  • Sistemas expertos: Infieren una solución a través del conocimiento previo del contexto en que se aplica y ocupa de ciertas reglas o relaciones.
  • Redes bayesianas: Propone soluciones mediante inferencia probabilística.
  • Inteligencia artificial basada en comportamientos: que tienen autonomía y pueden auto-regularse y controlarse para mejorar.
  • Smart process management: facilita la toma de decisiones complejas, proponiendo una solución a un determinado problema al igual que lo haría un especialista en la actividad.

INTELIGENCIA ARTIFICIAL COMPUTACIONAL

La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas conexionistas). El aprendizaje se realiza basándose en datos empíricos.

HISTORIA DE LA INTELIGENCIA ARTIFICIAL

  • Él término “inteligencia artificial” fue acuñado formalmente en 1956 durante la conferencia de Darthmounth, más para entonces ya se había estado trabajando en ello durante cinco años en los cuales se había propuesto muchas definiciones distintas que en ningún caso habían logrado ser aceptadas totalmente por la comunidad investigadora. La IA es una de las disciplinas más nuevas junto con la genética moderna.
  • Las ideas más básicas se remontan a los griegos, antes de Cristo. Aristóteles (384-322 a. C.) fue el primero en describir un conjunto de reglas que describen una parte del funcionamiento de la mente para obtener conclusiones racionales, y Ctesibio de Alejandría (250 a. C.) construyó la primera máquina autocontrolada, un regulador del flujo de agua (racional pero sin razonamiento).
  • En 1315 Ramon Llull en su libro Ars magna tuvo la idea de que el razonamiento podía ser efectuado de manera artificial.
  • En 1936 Alan Turing diseña formalmente una Máquina universal que demuestra la viabilidad de un dispositivo físico para implementar cualquier cómputo formalmente definido.
  • En 1943 Warren McCulloch y Walter Pitts presentaron su modelo de neuronas artificiales, el cual se considera el primer trabajo del campo, aun cuando todavía no existía el término. Los primeros avances importantes comenzaron a principios de los años 1950 con el trabajo de Alan Turing, a partir de lo cual la ciencia ha pasado por diversas situaciones.
  • En 1955 Herbert Simon, Allen Newell y J.C. Shaw, desarrollan el primer lenguaje de programación orientado a la resolución de problemas, el IPL-11. Un año más tarde desarrollan el LogicTheorist, el cual era capaz de demostrar teoremas matemáticos.
  • En 1956 fue inventado el término inteligencia artificial por John McCarthy, Marvin Minsky y Claude Shannon en la Conferencia de Dartmouth, un congreso en el que se hicieron previsiones triunfalistas a diez años que jamás se cumplieron, lo que provocó el abandono casi total de las investigaciones durante quince años.
  • En 1957 Newell y Simon continúan su trabajo con el desarrollo del General Problem Solver (GPS). GPS era un sistema orientado a la resolución de problemas.
  • En 1958 John McCarthy desarrolla en el Instituto de Tecnología de Massachusetts (MIT) el LISP. Su nombre se deriva de LISt Processor. LISP fue el primer lenguaje para procesamiento simbólico.
  • En 1959 Rosenblatt introduce el Perceptrón.
  • A finales de los 50 y comienzos de la década del 60 Robert K. Lindsay desarrolla «Sad Sam», un programa para la lectura de oraciones en inglés y la inferencia de conclusiones a partir de su interpretación.
  • En 1963 Quillian desarrolla las redes semánticas como modelo de representación del conocimiento.
  • En 1964 Bertrand Raphael construye el sistema SIR (Semantic Information Retrieval) el cual era capaz de inferir conocimiento basado en información que se le suministra. Bobrow desarrolla STUDENT.
  • A mediados de los años 60, aparecen los sistemas expertos, que predicen la probabilidad de una solución bajo un set de condiciones. Por ejemplo DENDRAL, iniciado en 1965 por Buchanan, Feigenbaum y Lederberg, el primer Sistema Experto, que asistía a químicos en estructuras químicas complejas euclidianas, MACSYMA, que asistía a ingenieros y científicos en la solución de ecuaciones matemáticas complejas.
  • Posteriormente entre los años 1968-1970 Terry Winograd desarrolló el sistema SHRDLU, que permitía interrogar y dar órdenes a un robot que se movía dentro de un mundo de bloques.
  • En 1968 Minsky publica Semantic Information Processing.
  • En 1968 Seymour Papert, Danny Bobrow y Wally Feurzeig desarrollan el lenguaje de programación LOGO.
  • En 1969 Alan Kay desarrolla el lenguaje Smalltalk en Xerox PARC y se publica en 1980.
  • En 1973 Alain Colmenauer y su equipo de investigación en la Universidad de Aix-Marseille crean PROLOG (del francésPROgrammation en LOGique) un lenguaje de programación ampliamente utilizado en IA.
  • En 1973 Shank y Abelson desarrollan los guiones, o scripts, pilares de muchas técnicas actuales en Inteligencia Artificial y la informática en general.
  • En 1974 Edward Shortliffe escribe su tesis con MYCIN, uno de los Sistemas Expertos más conocidos, que asistió a médicos en el diagnóstico y tratamiento de infecciones en la sangre.
  • En las décadas de 1970 y 1980, creció el uso de sistemas expertos, como MYCIN: R1/XCON, ABRL, PIP, PUFF, CASNET, INTERNIST/CADUCEUS, etc. Algunos permanecen hasta hoy (Shells) como EMYCIN, EXPERT, OPSS.
  • En 1981 Kazuhiro Fuchi anuncia el proyecto japonés de la quinta generación de computadoras.
  • En 1986 McClelland y Rumelhart publican Parallel Distributed Processing (Redes Neuronales).
  • En 1988 se establecen los lenguajes Orientados a Objetos.
  • En 1997 Garry Kasparov, campeón mundial de ajedrez, pierde ante la computadora autónoma Deep Blue.
  • En 2006 se celebró el aniversario con el Congreso en español 50 años de Inteligencia Artificial – Campus Multidisciplinar en Percepción e Inteligencia 2006.
  • En el año 2009 ya hay en desarrollo sistemas inteligentes terapéuticos que permiten detectar emociones para poder interactuar con niños autistas.
  • En el año 2011 IBM desarrolló una supercomputadora llamada Watson , la cual ganó una ronda de tres juegos seguidos deJeopardy, venciendo a sus dos máximos campeones, y ganando un premio de 1 millón de dólares que IBM luego donó a obras de caridad.10
  • Existen personas que al dialogar sin saberlo con un chatbot no se percatan de hablar con un programa, de modo tal que se cumple la prueba de Turing como cuando se formuló: «Existirá Inteligencia Artificial cuando no seamos capaces de distinguir entre un ser humano y un programa de computadora en una conversación a ciegas».
  • Como anécdota, muchos de los investigadores sobre IA sostienen que «la inteligencia es un programa capaz de ser ejecutado independientemente de la máquina que lo ejecute, computador o cerebro».

LA INTELIGENCIA ARTIFICIAL Y LOS SENTIMIENTOS

El concepto de IA es aún demasiado difuso. Contextualizando, y teniendo en cuenta un punto de vista científico, podríamos englobar a esta ciencia como la encargada de imitar una persona, y no su cuerpo, sino imitar al cerebro, en todas sus funciones, existentes en el humano o inventadas sobre el desarrollo de una máquina inteligente.

A veces, aplicando la definición de Inteligencia Artificial, se piensa en máquinas inteligentes sin sentimientos, que «obstaculizan» encontrar la mejor solución a un problema dado. Muchos pensamos en dispositivos artificiales capaces de concluir miles de premisasa partir de otras premisas dadas, sin que ningún tipo de emoción tenga la opción de obstaculizar dicha labor.

En esta línea, hay que saber que ya existen sistemas inteligentes. Capaces de tomar decisiones «acertadas».

Aunque, por el momento, la mayoría de los investigadores en el ámbito de la Inteligencia Artificial se centran sólo en el aspecto racional, muchos de ellos consideran seriamente la posibilidad de incorporar componentes «emotivos» como indicadores de estado, a fin de aumentar la eficacia de los sistemas inteligentes.

Particularmente para los robots móviles, es necesario que cuenten con algo similar a las emociones con el objeto de saber –en cada instante y como mínimo– qué hacer a continuación [Pinker, 2001, p. 481].

Al tener «sentimientos» y, al menos potencialmente, «motivaciones», podrán actuar de acuerdo con sus «intenciones» [Mazlish, 1995, p. 318]. Así, se podría equipar a un robot con dispositivos que controlen su medio interno; por ejemplo, que «sientan hambre» al detectar que su nivel de energía está descendiendo o que «sientan miedo» cuando aquel esté demasiado bajo.

Esta señal podría interrumpir los procesos de alto nivel y obligar al robot a conseguir el preciado elemento [Johnson-Laird, 1993, p. 359]. Incluso se podría introducir el «dolor» o el «sufrimiento físico», a fin de evitar las torpezas de funcionamiento como, por ejemplo, introducir la mano dentro de una cadena de engranajes o saltar desde una cierta altura, lo cual le provocaría daños irreparables.

Esto significa que los sistemas inteligentes deben ser dotados con mecanismos de retroalimentación que les permitan tener conocimiento de estados internos, igual que sucede con los humanos que disponen de propiocepción, interocepción, nocicepción, etcétera. Esto es fundamental tanto para tomar decisiones como para conservar su propia integridad y seguridad. La retroalimentación en sistemas está particularmente desarrollada en cibernética, por ejemplo en el cambio de dirección y velocidad autónomo de un misil, utilizando como parámetro la posición en cada instante en relación al objetivo que debe alcanzar. Esto debe ser diferenciado del conocimiento que un sistema o programa computacional puede tener de sus estados internos, por ejemplo la cantidad de ciclos cumplidos en un loop o bucle en sentencias tipo do… for, o la cantidad de memoria disponible para una operación determinada.

A los sistemas inteligentes el no tener en cuenta elementos emocionales les permite no olvidar la meta que deben alcanzar. En los humanos el olvido de la meta o el abandonar las metas por perturbaciones emocionales es un problema que en algunos casos llega a ser incapacitante. Los sistemas inteligentes, al combinar una memoria durable, una asignación de metas o motivación, junto a la toma de decisiones y asignación de prioridades con base en estados actuales y estados meta, logran un comportamiento en extremo eficiente, especialmente ante problemas complejos y peligrosos.

En síntesis, lo racional y lo emocional están de tal manera interrelacionados entre sí, que se podría decir que no sólo no son aspectos contradictorios sino que son –hasta cierto punto– complementarios.

VENTAJAS Y DESVENTAJAS

Ventajas de la Inteligencia Artificial:

  • La I.A ayuda a vender más, tal y como se ha descrito anteriormente, ya que al aplicar el Test de Human a las bases de datos se puede conocer a cada persona de forma veraz y acertada, para luego poder usar dicho conocimiento y argumentar mejor las ventas.
  • Así pues, aplicando técnicas de Marketing Tecnificado sobre las bases de datos internas de clientes se puede vender mucho más gracias a una mejor selección del público objetivo, a una mejor argumentación, y a un mejor enfoque de cliente, consiguiendo el necesario y actual enfoque hacia el cliente en todas las acciones y decisiones de marketing (Customer Intelligence), amparado en el rigor científico que valida todos los argumentos que las fundamenten.
  • La Humanation utiliza la Inteligencia artificial, con su nueva tecnología, de esta forma se integra al software existente, dando a las compañías un potenciamiento que les permitirá conocer más a sus clientes, y sobre todo, hacerlo más rápido, de esta forma, podrán ofrecer al consumidor todo aquello que necesita y sobre todo, en el momento adecuado, y así, aumentar sus beneficios de forma significativa al tratar a sus clientes de forma más acertada y personalizada.
  • Ofrece infinitas ventajas competitivas y de ahorro de recursos, que anteriormente no se tenían. Además, estas tecnologías permiten la generación de áreas de oportunidad, las cuales aprovechadas correctamente ofrecen grandes beneficios a todo aquellos que las apliquen. En uno de estos nichos de oportunidad se encuentran los sistemas de inteligencia artificial, los cuales se han aplicado en una gran variedad de tareas, desde la enseñanza hasta la automatización de procesos productivos.
  • La mayoría de los sistemas de inteligencia artificial, tienen la peculiaridad de aprender, lo que les permite ir perfeccionando su desempeño conforme pasa el tiempo. Además estos sistemas pueden analizar volúmenes muy grandes de información a muy alta velocidad, lo que permite obtener indicadores puntuales de las operaciones de la empresa.

Desventajas de la Inteligencia Artificial

Es evidente que para actualizar se necesita de reprogramación de estos (tal vez este sea una de sus limitaciones más acentuadas), otra de su limitaciones puede ser el elevado coste en dinero y tiempo, además que estos programas son poco flexibles a cambios y de difícil acceso a información no estructurada. Un robot con el objetivo principal de satisfacer a los seres humanos sería de gran ayuda, pero un robot cuyo objetivo principal sería su propia supervivencia sería muy peligroso. Puesto que pensará mucho más rápidamente y con más precisión que nosotros, usará todos los recursos disponibles para sus propios propósitos, y nosotros estaríamos desamparados. Tal robot debe ser ilegal y debe ser destruido tan pronto como sea detectado.

CONCLUSIÓN

El estudio de la inteligencia es una de las disciplinas más antiguas, por más de 2000 años los filósofos no han escatimado esfuerzos por comprender como se ve, recuerda y razona junto con la forma en que estas actividades deberían realizarse. Según John Mc Carthy la inteligencia es la “capacidad que tiene el ser humano de adaptarse eficazmente al cambio de circunstancias mediante el uso de información sobre esos cambios”, pero esta definición resulta muy amplia ya que de acuerdo con esta, el sistema inmunológico del cuerpo humanó resultaría inteligente ya que también mediante el uso de información este logra adaptarse al cambio. Otra interesante manera de ilustrar la inteligencia seria recurrir a la teoría societal de la mente de Marvin Minsky donde cada mente humana es el resultado del accionar de un comité de mentes de menor poder que conversan entre sí y combinan sus respectivas habilidades con el fin de resolver problemas.

BIBLIOGRAFÍA

  • E. Rich y K. Knight. Inteligencia Artificial. McGraw-Hill, 1994 (lógica)
  • D. Borrajo, N. Juristo, V. Martínez y J. Pazos, Inteligencia Artificial.
  • Métodos y Técnicas, Centro de Estudios Universitarios Ramón Areces, Madrid, 1993
  • M. Ginsberg, “Essentials of Artificial Intelligence”, Morgan-Kaufmann, 1993
  • S. Russell y P. Norvig, “Inteligencia Artificial. Un enfoque moderno”. Prentice Hall, 1996