ESTRUCTURA Y PROPIEDADES DE LOS AMINOACIDOS

src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">

La estructura general de un aminoácido se establece por la presencia de un carbono central alfa unido a: un grupo carboxilo (naranja en la figura), un grupo amino (azul), un hidrógeno (en verde) y la cadena lateral (rojo): “R” representa la cadena lateral, específica para cada aminoácido. Técnicamente hablando, se los denomina alfa-aminoácidos, debido a que el grupo amino (–NH2) se encuentra a un átomo de distancia del grupo carboxilo (–COOH). Como dichos grupos funcionales poseen H en sus estructuras químicas, son grupos susceptibles a los cambios de pH; por eso, al pH de la célula prácticamente ningún aminoácido se encuentra de esa forma, sino que se encuentra ionizado.

Los aminoácidos a pH bajo (ácido) se encuentran mayoritariamente en su forma catiónica (con carga positiva), y a pH alto (básico) se encuentran en su forma aniónica (con carga negativa). Sin embargo, existe un pH específico para cada aminoácido, donde la carga positiva y la carga negativa son de la misma magnitud y el conjunto de la molécula es eléctricamente neutro. En este estado se dice que el aminoácido se encuentra en su forma de ion dipolar o zwitterión.

src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">

PROPIEDADES

Ácido-básicas

  • Comportamiento de cualquier aminoácido cuando se ioniza. Cualquier aminoácido puede comportarse como ácido y como base, se denominan sustancias anfóteras.
  • Cuando una molécula presenta carga neta cero está en su punto isoeléctrico. Si un aminoácido tiene un punto isoeléctrico de 6,1 su carga neta será cero cuando el pH sea 6,1.
  • Los aminoácidos y las proteínas se comportan como sustancias tampón.

Ópticas

Todos los aminoácidos excepto la glicina tienen el carbono alfa asimétrico, lo que les confiere actividad óptica; esto es, sus disoluciones desvían el plano de polarización cuando un rayo de luz polarizada las atraviesa. Si el desvío del plano de polarización es hacia la derecha (en sentido horario), el compuesto se denomina dextrógiro, mientras que si se desvía a la izquierda (sentido antihorario) se denomina levógiro. Un aminoácido puede en principio existir en sus dos formas enantioméricas (una dextrógira y otra levógira), pero en la naturaleza lo habitual es encontrar sólo una de ellas.

Estructuralmente, las dos posibles formas enantioméricas de cada aminoácido se denominan configuración D o L dependiendo de la orientación relativa en el espacio de los 4 grupos distintos unidos al carbono alfa. El hecho de que sea dextrógiro no quiere decir que tenga configuración D.Todos los aminoacidos proteicos son L-aminoacidos.

Químicas

  • Las que afectan al grupo carboxilo, como la descarboxilación, etc
  • Las que afectan al grupo amino, como la desaminación.
  • Las que afectan al grupo R.

FUNCIONES

Los aminoácidos son la base de todo proceso vital ya que son absolutamente necesarios en todos los procesos metabólicos.

Sus funciones más importantes son:

  • El transporte óptimo de nutrientes y
  • La optimización del almacenamiento de todos los nutrientes (es decir, agua, grasas, carbohidratos, proteínas, minerales y vitaminas).

ESTRUCTURA Y PROPIEDADES DE LAS PROTEÍNAS

Estructura General

La estructura de las proteínas puede jerarquizarse en una serie de niveles, interdependientes. Estos niveles corresponden a:

  1. Estructura primaria, que corresponde a la secuencia de aminoácidos.
  2. Estructura secundaria, que provoca la aparición de motivos estructurales.
  3. Estructura terciaria, que define la estructura de las proteínas compuestas por un sólo polipéptido.
  4. Estructura cuaternaria, si interviene más de un polipéptido.

Estructura primaria

La estructura primaria de las proteínas se refiere a la secuencia de aminoácidos, es decir, la combinación lineal de los aminoácidos mediante un tipo de enlace covalente, el enlace peptídico. Los aminoácidos están unidos por enlaces peptídicos siendo una de sus características más importantes la coplanaridad de los radicales constituyentes del enlace.

La estructura lineal del péptido definirá en gran medida las propiedades de niveles de organización superiores de la proteína. Este orden es consecuencia de la información del material genético: Cuando se produce la traducción del RNA se obtiene el orden de aminoácidos que van a dar lugar a la proteína. Se puede decir, por tanto, que la estructura primaria de las proteínas no es más que el orden de aminoácidos que la conforman.

Estructura secundaria

La estructura secundaria de las proteínas es la disposición espacial local del esqueleto proteico, gracias a la formación de puentes de hidrógeno entre los átomos que forman el enlace peptídico, es decir, un tipo de enlace no covalente, sin hacer referencia a la cadena lateral. Existen diferentes tipos de estructura secundaria: – Estructura secundaria ordenada, (repetitivos donde se encuentran los hélices alfa y cadenas beta, y no repetitivos donde se encuentran los giros beta y comba beta) – Estructura secundaria no ordenada – Estructura secundaria desordenada.

Los motivos más comunes son la hélice alfa y la beta lámina (Hoja plegada beta).

Hélice alfa: Los aminoácidos en una hélice α están dispuestos en una estructura helicoidal dextrógira, con unos 3.6 aminoácidos por vuelta. Cada aminoácido supone un giro de unos 100° en la hélice, y los carbonos α de dos aminoácidos contiguos están separados por 1.5Å. La hélice está estrechamente empaquetada, de forma que no hay casi espacio libre dentro de la hélice. Todas las cadenas laterales de los aminoácidos están dispuestas hacia el exterior de la hélice.

El grupo amino del aminoácido (n) puede establecer un enlace de hidrógeno con el grupo carbonilo del aminoácido (n+4). De esta forma, cada aminoácido (n) de la hélice forma dos puentes de hidrógeno con su enlace peptídico y el enlace peptídico del aminoácido en (n+4) y en (n-4). En total son 7 enlaces de hidrógeno por vuelta. Esto estabiliza enormemente la hélice. Está dentro de los niveles de organización de la proteína.

Lámina beta: La beta lámina se forma por el posicionamiento paralelo de dos cadenas de aminoácidos dentro de la misma proteína, en el que los grupos amino de una de las cadenas forman enlaces de hidrógeno con los grupos carboxilo de la opuesta. Es una estructura muy estable que puede llegar a resultar de una ruptura de los enlaces de hidrógeno durante la formación de la hélice alfa. Las cadenas laterales de esta estructura están posicionadas sobre y bajo el plano de las láminas. Dichos sustituyentes no deben ser muy grandes, ni crear un impedimento estérico, ya que se vería afectada la estructura de la lámina.

Estructura terciaria

Es el modo en que la cadena polipeptídica se pliega en el espacio, es decir, cómo se enrolla una determinada proteína, ya sea globular o fibrosa. Es la disposición de los dominios en el espacio.
La estructura terciaria se realiza de manera que los aminoácidos apolares se sitúan hacia el interior y los polares hacia el exterior en medios acuosos. Esto provoca una estabilización por interacciones hidrofóbicas, de fuerzas de van der Waals y de puentes disulfuro1 (covalentes, entre aminoácidos de cisteína convenientemente orientados) y mediante enlaces iónicos.

Estructura cuaternaria

La estructura cuaternaria deriva de la conjunción de varias cadenas peptídicas que, asociadas, conforman un ente, un multímetro, que posee propiedades distintas a la de sus monómeros componentes. Dichas subunidades se asocian entre sí mediante interacciones no covalentes, como pueden ser puentes de hidrógeno, interacciones hidrofóbicas o puentes salinos. Para el caso de una proteína constituida por dos monómeros, un dímero, éste puede ser un homodímero, si los monómeros constituyentes son iguales, o un heterodímero, si no lo son.

PROPIEDADES

Solubilidad

Las proteínas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua. Así, cuando una proteína se solubiliza queda recubierta de una capa de moléculas de agua (capa de solvatación) que impide que se pueda unir a otras proteínas lo cual provocaría su precipitación (insolubilización). Esta propiedad es la que hace posible la hidratación de los tejidos de los seres vivos.

Capacidad Amortiguadora

Las proteínas tienen un comportamiento anfótero y ésto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.

Desnaturalización y Renaturalización

La desnaturalización de una proteína se refiere a la ruptura de los enlaces que mantenían sus estructuras cuaternaria, terciaria y secundaria, conservándose solamente la primaria. En estos casos las proteínas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteína pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc… El efecto más visible de éste fenómeno es que las proteínas se hacen menos solubles o insolubles y que pierden su actividad biológica.

La mayor parte de las proteínas experimentan desnaturalizaciones cuando se calientan entre 50 y 60º C; otras se desnaturalizan también cuando se enfrían por debajo de los 10 a 15º C.

La desnaturalización puede ser reversible (renaturalización) pero en muchos casos es irreversible.

Especificidad

Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteínas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias proteicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.

La enorme diversidad proteica interespecífica e intraespecífica es la consecuencia de las múltiples combinaciones entre los aminoácidos, lo cual está determinado por el ADN de cada individuo.

La especificidad de las proteínas explica algunos fenómenos biológicos como: la compatibilidad o no de trasplantes de órganos; injertos biológicos; sueros sanguíneos; etc… o los procesos alérgicos e incluso algunas infecciones.

FUNCIONES

Las proteínas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteínas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc…Todas las proteínas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteínas estructurales se agregan a otras moléculas de la misma proteína para originar una estructura mayor. Sin embargo, otras proteínas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc…

A continuación se exponen algunos ejemplos de proteínas y las funciones que desempeñan:

Función Estructural

– Algunas proteínas constituyen estructuras celulares:

  • Ciertas glucoproteínas forman parte de las membranas celulares y actúan como receptores o facilitan el transporte de sustancias.
  • Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.

– Otras proteínas confieren elasticidad y resistencia a órganos y tejidos:

  • El colágeno del tejido conjuntivo fibroso.
  • La elastina del tejido conjuntivo elástico.
  • La queratina de la epidermis.

Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.

Función Enzimática
Las proteínas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.

Función Hormonal

Algunas hormonas son de naturaleza proteica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).

Función Reguladora

Algunas proteínas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).

Función Homeostatica

Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.

Función Defensiva

  • Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.
  • La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.
  • Las mucinas tienen efecto germicida y protegen a las mucosas.
  • Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.

Función de Transporte

  • La hemoglobina transporta oxígeno en la sangre de los vertebrados.
  • La hemocianina transporta oxígeno en la sangre de los invertebrados.
  • La mioglobina transporta oxígeno en los músculos.
  • Las lipoproteinas transportan lípidos por la sangre.
  • Los citocromos transportan electrones.

Función Contractil

  • La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.
  • La dineina está relacionada con el movimiento de cilios y flagelos.

Función de Reserva

  • La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.
  • La lactoalbúmina de la leche.

src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">