Intervalo de Confianza

Intervalo de confianza

En estadística, se llama a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa con 1 – α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.1

El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más probabilidad de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumenta su probabilidad de error.

Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, θ.2 Es habitual que el parámetro presente una distribución normal. También pueden construirse intervalos de confianza con la desigualdadde Chebyshev.

En definitiva, un intervalo de confianza al 1 – α por ciento para la estimación de un parámetro poblacional θ que sigue una determinada distribución de probabilidad, es una expresión del tipo [θ1, θ2] tal que P[θ1 ≤ θ ≤ θ2] = 1 – α, donde P es la función de distribución de probabilidad de θ.
Las líneas verticales representan 50 construcciones diferentes de intervalos de confianza para la estimación del valor μ.

Nivel de confianza

El nivel de confianza se indica por 1-α y habitualmente se da en porcentaje (1-α)%. Hablamos de nivel de confianza y no de probabilidad (la probabilidad implica eventos aleatorios) ya que una vez extraída la muestra, el intervalo de confianza estará definido al igual que la media poblacional (μ)y solo se confía si contendrá al verdadero valor del parámetro o no, lo que si conlleva una probabilidad es que si repetimos el proceso con muchas medias muestrales podríamos afirmar que el (1-α)% de los intervalos así construidos contendría al verdadero valor del parámetro.
Los valores que se suelen utilizar para el nivel de confianza son el 95%, 99% y 99,9%
Para un nivel de confianza del 88%,

1-α = 0.88
α = 0.12
α/2 = 0.06
Zα/ 2 = Z0.06y se suma
P(Z ≤ Z 0.06) =0.94 (1-α/2)
Z(0.94)=1.56

Nivel de significancia

En estadística, un resultado es estadísticamente significativo cuando no es probable que haya sido debido al azar. Una “diferencia estadísticamente significativa” solamente significa que hay evidencias estadísticas de que hay una diferencia; no significa que la diferencia sea grande, importante, o significativa en el sentido estricto de la palabra.

El nivel de significación de un test es un concepto estadístico asociado a la verificación de una hipótesis. En pocas palabras, se define como la probabilidad de tomar la decisión de rechazar la hipótesis nula cuando ésta es verdadera (decisión conocida como error de tipo I, o “falso positivo”). La decisión se toma a menudo utilizando el valor p (o p-valor): si el valor p es inferior al nivel de significación, entonces la hipótesis nula es rechazada. Cuanto menor sea el valor p, más significativo será el resultado.

En otros términos, el nivel de significación de un contraste de hipótesis es una probabilidad p tal que la probabilidad de tomar la decisión de rechazar la hipótesis nula – cuando ésta es verdadera – no es mayor que p.